
Replanning Using Hierarchical Task Network
and Operator-Based Planning

Xucvnei Wang’ and Steve Chicm

Jet I’ro[)ulsiori Laboratory, Ckdifornia Institute of Technology
4800 oak Grove I)rivc, M/S 525-3660, F’asadcma, CA 9110!)-8099

Abstract. Ill order to scale-up to real-~vorlcl problems, planning sys-
tems must be able to rc~)lal) in order to deal with changes i~~ problerll
context. In this paper we describe hierarchical task network and operator-
based rc-planning techniclues which allow adaptation of a previous plan
to account for problems associated with executing plans in real-world d~
mains with uncertainty, concurrency, changing objectives. We focus on
repla!lning which preserves elements of the original plan in order to use
xnore reliable domain knowledge ancl to facilitate user uuderstancling of
I)roducr.d F,lans, We also presel,t el[ipirical results documenting the effec-
tiveness of these techniques in a NASA antenna operations application.
2

Keywords: planning ancl reasoning cm action and change, replanning, real-
wo~~d application, HTN/operator-Lascd planning

1 Introduction

As AI planning techniques move from the research environment to real-world
applications, it is critical to aclclress the ~lecds that arise from their application
environment. S~mcificially, many application domains are dynamic, uncertain,
concurrent, and have cllalgillg objectives. Real clomains may be dynamic be-
cause: the worlcl can change independently of the plan being executecl; the results
of performing an action often cannot be predicted with certai~lty; actions and
events may occur simultaneously; new goals can arise and old goals can become
unimportant as time passes. In order to adapt to such context, planning systems
must be able to replan, i.e., to appropriately aclapt and modify the current plan
to these unexpected changes in goal or state.

In this paper, we describe our replanning framework that addresses the
above issues in real-world applicatioxls. This framework presumes a hybricl ap-
proach using both hierarchical task network (HTN) planning (as typified by
[Erol et al 1994]) and operator-based (as typified by [Pemberthy ancl Welcl 1992,
—.———
* Current address: Rockwell Science Center, 444 lIigh St. Suite 400, Palo Alto, CA

94301, nlei@rpal.rockwell. cort~
2 ‘1’his paper describes work performed by the Jet Propulsion Laboratory, California

Imtitute o f ‘J’echno]ogyj under contract with the National Aeronautics and Space
Acl[,li[~istr:ttiorl.

Carbonel] et al 1992]) ~Iletlmls. This is a conlll)on and powerful planning archit-
ecture (SUCII as O-Plall [Currie and late 1991], DPLAN [Cllie~l et al 1995], and
[Kanlbhampati 19’35]). We prme,lt our general framework a.s well as its al,plica-
tion to a real application dolnaill,

In our work, we focus on replanning which preserves elements of the original
plal) instead of planning froln scratctl fro[o tile curte~lt state for the following
reaso~ls:

– Do?nai7Lknou)kdgc 7“e1zabdzty. ~llcoclirlg ofciolllaill kllowlec]ge isilrl~)e]"fect -
don~ain knowledge for nomiual operations scenarios is most likely to be cor-
rect. Thus, byre-usi[lg &sllltlcll oftllexlort~i[lal ol)eratiolls dolllai~l kIlo\vledge
as possible, tile risk of encountering faulty domain knowledge is reduced.

– Operator understanding. The users who actually carry out the plan execw
tions are most familiar with nominal operations and small departures from
nominal operations are far easier for them to understand than novel action
sequences.

In this pal)er, we first briefly clescribe the DPI,AN planning framework (Sec-
tion 2). We then give detailecl descriptio~is for our replanning approach for un-
expected state changes (Sectio~l 3). We present application of the replan~lin,g
approach to a real-world problem, namely the Deep Space Network (DSN) An-
tenlla Operations domain. The empirical results demonstrate the effectiveness
of our replanning algorith~ns (Section 4). And finally we end this paper with
discussions, related work, and conclusions.

2 Planning using hierarchical task network and
operator-based planning

Our replanning approach presumes an integrated HTN/operator planning archit-
ecture as embodied in OPLAN ([Currie and Tate 1991]), DPLAN ([ChielL et al 1995])
and [Karnbharnpati 1995]. In this approach, a planner can use multiple planning
methods and reason about both activity-goals and state-goals. Activity-goals
correspond to operational or noll-operational activities and are usually marlip-
ulated using HTN planning techniques. State-goals correspond to the precon-
ditions alld effects of activity-goals, and are achieved through operator-basecl
planning. State-goals that have not yet been achieved are also considered non-
operational. Figure 1 shows the procedures used for refining these two types of
goals. As soon as a refinement strategy is applied to an activity-goal or state-
goal, it is removed from the list of no~l-operationa] goals. Planning is colnplete
when all (activity) goals are operational and all (state) goals have been achieved.
Further details on integrating HTN and operator-based planning paradignis is
clescribed in [Chien et al 1995].

If g is arl Activity-Goal,

1. I)ecoln[,osr: For each decomposition rule r ill R which can dcconlpcrsc g, a~)[)ly r
to I)rocll[ce a IICW,])lau 1“, If all corlstraillts ill 1“ are consisterlt,, thel] add I“ to Q.

2. Siluple Establisllrnellt: For each activity-goal g‘ in ~J that can be unified wit}l g,
;i[nplc estat)lisl~ g using g‘ and I)roduce a new plan 1“. If all colistraints in P’ are
consistent, then add 1“ to Q.

If g is a State-[;oal,

1. Stel) .4dditio1~: F’or eac}L aclivity-goal effect that can unify with g, add that goal to
}’ to produce a new plan [“. If the constraints irl I“ are consiskut, then add P’ to
Q.

2. Sirn~)le Fktat)lishment: For each activity-goal g‘ in (r that has ar(effect e that can
~ unified with g, simple establish g using e and produce a new plan P’. If all
coustrair(ts in 1“ are consistent, then acid 1“ to Q.

Fig. 1. Goal Refinement Strategies

3 Replanning for unexpected state changes

This section describes our algorithln for replanning when the worlcl changes
i[~depenclently of the plan beilLg executed. Tile input to the replanning algorithm
consists of

– tile original plan being executed (oplan),
— a list of actions already executed (czectJted-uctzvztzes), and
—. the current state (curre7d-shztc)3

Our approach for replanning assumes that (1) there is a default value for
each state-goal, (2) there are well-known methods (act ivities) for establishing
tile default value for each state-goal, (3) the original plan is applicable from a
state where each relevant state-goal is at its clefault value. These assumptions
are valid itl most application do)nains, For example, in a manufacturing domain,
(1) each device (e.g. robot, clamp) has a “home” position from which the original
plan executes. The home position holds default values for state-goals relevant
to the device; (2) there are methods to bring each device to its home position,
thus establishing the clefault values for the relevant state-goals; (3) each clevice
is always at its home position at the beginning c)f executing the original plan.

The relJlanning algorithm then re-uses as Inuch of the original plan as possi-
ble while nli~linlizing the amount of re-execution. The replanner returns a plan
consisting of the activities that need to be re-executed and those not executed,
as well as tile ordering constraints.

Our rel)lanuing approach proceeds as shown in the following four steps. First,
the algorithm creates an activity whose effects reflect the changes to the plan

3 In fact, it is not necessary to know the complete current state, as long a.s we have
the ability to query whether a state-goal relevar~t to the original plan is true or false
ill tile c(lrrcl~t st ate.

caused by tlic execlltcd activities (Figuw 3). SecollCl, tllc algoritlil[l dcter[i~i[les
thC StatC-gOa)S IK’CCSSal’y fOr CO1ltillllillg CX(’CutiO1l Of thC Ph> but ~le vlOhtC’(1
due to unexpected state changes; and then applies the “reset” activities to brilig
each state-goal to its default value (Figure 4). Finally, the planner determiners
which executed activities si]ou]d be re-executed (Figure 5). This algorithm guar-
antees that the repaired plan re-executes all the activities tilat are necessary to
successfully achieve the to~)-level goals.

__— —— —.
InpLIk: oplr171, the original plan

ezecuted-activities, a list of activities already executed,
current- s~ate, the current state

output: repaired-plan, repaired plan

1, appliedGool +– executeActivities(ezecuted-activities, op[an)
2. F/esel Goals e- resetC;oals (oplan, current-state, executed- actiuittes-lisf)
3. repaired-plan +- replan (opkrn, resetG’oals, applied~oa~)
-_—————

Fig. 2. Replanning for unexpected state changes

This rest of this sectiori gives det ailecl clcscriptions of our replanning paradigm.
The descriptions employ a crucial concept, namely violated state-goal. A
state-goal sg is violated state-goal given an original-plan (oplan) and a list
of executed activities (ezecuted-activities-list), if and only if there is a protection
(protect (not sg)) from 91 to 92 in oM7L where gl is in the list of executed
activities (em.cuted-actzvitzes-l ist), while g2is IIOt.

3.1 Execu t ing ac t iv i t i e s

Figure 3 describes how the original plan is modified to reflect the changes in the
plan by the executed activities. The algorithm creates an activity appliedG’oal
whose effects are the state changes causecl by executing executed-activities-list.
We assume that ezecuted-activities-list is given in order of the completion of
execution of each activity. In step 1, the effects and preconditions of applied-
Goal are initialized to an empty set. In step 2, the effects of each activity in
ezecutea’-activities-list are added to the effects of appliedGoal in order of their
executions. An effect of an activity may overwrite the effect of a activity exe-
cuted earlier. In step 3, all the activities in ezecuted-activities-list are removed
frolo the operational goal list of the plan, because in principle they should not
have to be re-executed again. In step 4, all the violated state-goals are locatecl
ancl acldecl back to the no[loperatiorlal goal list of the plan because they Iieecl
to be re-achievec{in order to ensure that theprecondition so fthe not executed
activities are satisfied. In step 5, appfiedGoalis promoted before alltbe activities
that have nck been executecl yet.

—— .—
[nputs: clcc IItecf-act~vities -list, a list o [activities already exmutecl,

o]~la?~, original [JlalI
[)lltl)llt: rlpp/2cd6’oal, all activity rc[,rt,serlti[lg ttlccffect ofcxcclltirlg erec[[ted- acti~/2t2es.
12s1

1. Initialize: I;flccts(af)plied[; o(,l)t {}, f’1cc0711fs(~If Jp12edG0al) +- {}
2. [’or each aclivitya E czecl~ted-activlttes -[ist, do:

F’or each effect e= hffccts(a), do:
if e E F;flcct(aljplicd(; oal), do rmthing,
else if {not e) E F;flect(u;,j~lle(lCoal), do:

F;flect(aT,;~liedGoal)t (f;flect(apl~ltedC; oal)U {e})\ {(note)}
CISC 1(’ect(applied6’oal) +- [<flect(appltedGoa[) U {e}

3. Oper-ationalGoals(oplan) + OperutiollalC;oals (o~jlarl) \ erecuted-activities -iist.
4. lror each effect e~ l;~ects(applied~; oal) do:

if (710t e) is a vioIated state-goal, do:
NonOperationalGoak(oplan)+- NonOperationalGoals(oplan)LJ (not e)

5. Forevmyactivityac OperationalGoals(oplan), do: adrl a after appliedG’oal
_.— _——

Fig.3. Executing activities: creatingan activity appliedG’oal to reflect the changes to
the ~~lan caused by executing the activities.

3.2 Rese t s t a t e -goa l s

Figurc4 describes how the original plan is modified to reflect the changes in
the plan caused by resetting the vicdated state-goals. The algorithm creates an
activity Reset C;oals for resetting the state-goals, and adds this activity into the
original plan. In step 1, we initialize 7eset G’oals to an activity without precon-
ditions or effects, at:cl insert it to the origirlal plan. In step 2, we compute all
the violated state-goals clue to unexpected state changes (violatedGoaLs), i.e.,
those that are true in the current state but not in the expected state of applying
executed activities. In step 3, we update reset Goals to account for the activities
that establish the default values of violatcdGoals. Since establishing the default
values may result in further protection violation, in step 4 we locate all such
violations amf move them back to the nonoperational goals of oplan to reachieve
them later. In step 5, resetGoals is promoted before all the activities that have
not been executed.

3 . 3 R e p l a n n i n g

Figure 5 describes how the rep]anller cletermines which activities need to be
m-executed. The algorit 11111 analyyes the protections in the origi[lal plan, re-
executing activities that are necessary to re-establish the protections that arc
violated by tile effects of appliedGoal or resetGoais. In this algorithm, the variable
rc-crecute-activities is used to stcme the activities that neecl to be re-executecl, or
l)recollditiol~s that neccl to be re-achieved. This variable is used to ensure that
each precondition is re-achieved at most once so that the replanner does not go
into an infinite loop. In essence, the re~)larlning algorithm recursively cletermines

1. [uitialize reset 6’oak and insert it to oplun
2. violatedGoah t { s t a t e - g o a l g: g 6 cffrfent-slale, g # eqmcted-sta~c, and g is a

violated state-goal }
3. for each g E ViolatedG’oak, do:

I; ffects(resetGods) +- FM’ects(reset6’oak) U de~aull-value (g)
4. For each effect e E reset6’oak, do:

if e is a violatccl state-goal, then
NonOperationalG’oa k(oplan) + ~orzopcratzo~aal~ oals(o~>[all) U (not e)

5. For every activity u = Operatiorlalcoals(o?tlart), do: add c1 after r~s~t~;oals
.——— — .

Fig. 4. Resetting goals: creating an activity resetGoals to reflect the changm to the
plan caused by resetting the violated goals.

which executed activities are used to achicvc the protections that are violated
by appliedGoal or resetGoals, m-executes these activities (i.e. adds them back
to the operational goals of the plan) to ensure that tbc preconditions of tlw
re-exccutecl activities and not-executed activities are achieved. During replann-
ing, the nonoperatiollal goals of the p]a~i are either the preconditions of a not
executed activity that are undone by applicdCoal or resetGoak, or the activi-
ties that were used to achieve these preconditions in the original plan, or tile
regressed preconditions of these activities. lhe algorithm repeatedly chocj.ses a
goal, crmentGoal, from the nonoperational goal list, and removes it froln the
list (steps] and 2). In step 3, if currentCoal is a precondition of an activity,
then the activity g that wzw used to achieve curre71tGoat il~ the original platl
is added to the operational (or nonoperational) goal list of oplan. In aclditiou,
for any protection from an executed activity to g, if the protection is violated
by resetOp or appliedG’oal, then the protected fact is added to tl)e nonc,lJera-
tional goal list because it should be re-achieved. Furthermore, if the effects of
gviolate a protection from unexecuted activity to a not yet executed activity,
then theviolated protection is also added to thenonoperational goals so that it
can be re-achieved. In step 4, if currentGoalis an activity goal, then the goals
that currentGoal decomposed into in the original plan are added back to the
(non) operational goal list of oplan. Finally, v’e ensure that resetOp is ordered
before any other activities in the repaired plan. Activities in the operational goal
list form the plan returned by the replan~ler.

The ordering constraints of the original plans are kept as they are. Since
theonly ordering constraints the replanner adds to the original plan are to add
the resetGoals before any activities need to be re-executed and any activities
not yet executed, the replanning algoritl]m does not add any inconsistency to
the original plan. Analysis of the soundness and complexity can be found in
Section 5.

For example, suppose the original plan is shown in Figure 6. The protections
in the plan are: (1) Pl: protect q frolu A to B, (where A achieves q), and (’2)

IILIIIIIS: oph7L, [,[m with appfirdGoal and resct[f’rxds added in
Out[)ut: 7fpoimf-plu71

J@“- [’w’+ ‘N7’~ffroyo’’a1 ~’0a1s ‘i! ‘la 1 ~= Lfi-I%H’YOn/J km lo7,a160a ,$0, an M not e,,, , , c
1. current ;oal t choose a goal from N07L ;,eratzof/clGoals(o~lla71);
2, No,lOper(,tior, alGoals(o~,lari) + No,tO?,eratio7LalGoals(oplu71) \ {currerLtGoal}
3. if currc7Lt G0a[is a ~~rf,collclitio[l-~c)al, CIO:

3.1. g 6- locate the activity achieving cur7enf6’oal.
if g E rc-execute-acttutftfs, goto 1.

3.2. if g is an operational goal then:
{)~,cratto,,al~ oals(o~,lalb) + Oper(Ltio,kalGoals(OplaTL) U {g}
else NonOperationa16’oals(oplan) i- NonOpcratiorlalGoals(oplan) U {9)

3.3. for every protection (protect p from gO to g), do:
if p is cleleted by reset Goals or applled G’oa[, and g @ re-erecute-activities,
then:
NonOperationalG’oals(oplan) +- NonOperatiorlalG’oals(oplarl) U {p},
re-erecute-activities + re-execute-activities U {p}

3.4. for every protection (protect p) from gf to g.?, awl every effect e of g, such
that p = (7Jot e), gl E executed-activities-fist, g2 @ executed-activities-list,
p @ re-erecute-activities, do:
Norlf)perationalGoals(oplan) + Non@cratiorzalGoak(op!arl) U { p)
re-erecutr-activities t re-vecute-activities U { p }

3.5. rc-emcute-activities 4- re-e.recute-ac~ ivities U {g}
4. if crirrentGoal is an activity-goal, do:

for every child g of currer~t6’oal,
If g @ re-ezecate-activities, theu
if g is an operational goal, then:
OperationalGoals (oplari) 4- 0perati07salGoals(oplan,) U {g}

/
else Non OperationalGoals (oplan +- NonOperationalGoals(o Ian U {g}

z ?c%;;e~$lan ?/activity a E OPerationalC; oals op!an), do: add u after r-e.~c Goa s

Fig. 5. [te~,lanning: determining w}lich activities need to be re-executed.

P2: protect r froln B to D (where B achieves r). Suppose that when activities A,
E, and ~ are executed, and activity D is not yet executed, an Ul,expected state
change OCCUIS that results in deleting g and rfrom the state. Then activity B
neecls tobe re-executed because protection P2 is violated by the reset operator.
Activity A also needs to be re-executed because PI is violated by the reset
operator ancl activity B neccls to be re-executed. But activity ~ does not need
to be re-executecl. The repaired plan is shown in Figure7.

4 Empirical Evaluation

Our replanning algorithm is a general approach which uses a domain-independent
hybrid HTN/operator plannitl garchitecture. It hmbecnteste dinarealappli-
cation, namely, the deep space network (DSN) antenna operation domain. This
sectiotl describes the application domain, how the general replanning problem
nla~~s onto the real application domai]], as well as empirical test results

D

Fig. 6. Au example of an original plan. Unexpected
state changes occurs when activities A, B, and C are
executed, but I) is not executed.

A

El

1)

Fig. 7. Repaired plan where activities A, B are
re-executed upon an unexpected state change.

4.1 Planning for Deep Space Network Antenna Operat ions

The Deep Space Network is a set of worlcl-wide antenna networks which is nlain-
tained by the Jet Propulsion Laboratory (J PI.). Through these antennas, JPL
is responsible for providing the communications link with a multitude of space-
craft. Operations personnel are responsible for creating and maintaining this link
by configuring the required antenna subsystems and performing test ancl cali-
bration procedures. The task of creating the communications link is a manual
and time-consuming process which requires operator input of over a hundred
control directives and the constant monitoring of several dozen displays to de-
ter~nine the exact execution status of the system. Recently, a system called the
Link Monitor and Control Operator Assistant (LMCOA), has been develo~~ccl
to improve operations efficiency and reduce precalibration time. The LhlCOA
provides semi-automated monitor and control functions to support operating
DSN antennass. One of the main inputs to the LMCOA is a temporal depen-
dency net work (TDN). A TDN is a directed graph that incorporates texnporal
and behavioral knowledge. This graph represents the steps required to perform a
communications link operation. In current operations, these TDNs are developed
manually. DPLAN is an AI planning system ciesigned to automatically generate

tll(w ‘1’I~Ns lWCKI 011 i[i[)ut irIforltmtiorl d<wril)illg tl)e alltenlla track type ancl
ttlc, [leccwsary e{luil)nlcnt co[lfiguratiolt. 1)1’I,AN integrates IITN ~)lall~ling and
olmator-based plallliil]g. Givell a set of antenna tracki[lg goals a~ld cquip~nel)t
information, DPLAN then generates a list of antenna operation steps that will
create a co~llrll~l]licatiolls link with orbiting spacecraft.

4 .2 Replanning Scenarios for tile IISN donlain

The DSN Arltenna Operatiorls clomain is dyllarl~ic, uncertain, concurrent, and
has changing objectives. This domain is dynamic because the current state may
unexpectedly change due toexternal events such as equipment (subsystem) fail-
ures. It is uncertain because actions may not always achieve their desired effects.
It is concurrent because actiorls pertaining to clifferent subsystems Inay occur
simultaneously. It has changing objectives because llewgoah? nlaybeactcled after
the execution of the original plan ha-~ already begun. Our replanrling system is
able to replanin allthese scenarios. In our empirical evaluation, we focus on the
first scenario, i.e., replanning when the world changes independently of the plan
being executed.

Note that one alternative to replanning would be to simply reset all of the
subsystems in use ancl completely restart the plan from scratch, re-achieving
all of the desired conclitions. We nanle this approach complete-reset approach.
In thegelleral c~sethis apl~roacll u~lclesirable beca~lseofthc domain knowledge
reliability and ope7atoru 7~derstar~dir~gr c~sol~sc lcscribecli11 Section 1. Inthe DSN
antenna opmations domain this approach is also too irlefficient to be applicable
for two reasons:

— Complete-rese tapproach is slow from an execution time standpoint. DSN
al~tennas are a scarce over-subscribed resource. Completely restarting to re-
cover from failures would reduce antenna availability for tracking purposes
by increasing downtime due to time lost during recovery from changed goals,
state changes, or failed actions. Adclitionally, clelaying a track may result in
lost clata becauseit isgenerally infemibleto alter the spacecraft command
sequence on short notice.

—— L’omplete-reset approach involves resetting (powering off and then back on)
all of the subsystems. This power cyclil)g of the hardware introduces unnec-
essary wear on tile expensive and scarce DSN subsystems.

Thus our replanning algorithm re-uses as much of the original plan as pos-
sible while millinlizing the amount of re-execution by restoring the subsystem
tc) ;L functioning state (generally through resetting the subsystem) and by re-
acilicving relevant states before continuing plan execution.

4 .3 Empi r i ca l r e su l t s

In Sectioll 1, wc stated tl~at rcphuining by reusing the llo]nillal pku~ }vas ctc-
sirable because the domain knowledge for no~ninal operations is Illore reliableq
.]n order to verify this clain~, we tested our replanning algorithm 011 a series
of replanni[l.g problelns. In these ex~wrilnellts, the replalinillg algorith[n usecl
knowledge developed for nominal opcratiolw to re~)lall fol 5 probIerLls for each of
the 3 types of replanning scenarios: subsystelll failure, additional service request,
and activity failure, to produce atotalof 15 plaus. A domain expert validated 6
plans randomly selected from the 15repairecl pla~)s generated byourreplalll~m.
The limited size of the verified test set is due to tile significant effort required
tortlarillally verify aT1)Na!~d tl~escarcity of the DSN doll~aill exl~erts. Tile (lo-
main expert considered all the 6 examined replans to be correct (i.e they would
achieve the goals from the replan state). These results are summarized in Table
1.

E===”- - I :]#of plans #of plans where planeZPc,, = p~~~ZCPlanner % correct repaired pla]i=
10070

Table 1. Expert judged correctness of the repaired plan

The second criterion for evaluation is that it is critical to minimize executicm
time of the TDNs. FrcmI the replanning point of view, this means rninitnizilig
the number of activities that need to be re-ext’cuted. For this, we compared the
number of activities that are re-executed in the repaired plan versus the corre-
sponding number in ttle plans generated using complete brute force replalLl~ing
(i.e. resetting everything and starting from scratcl,). In the 15 replanning cases,
the average number of activities in the original TDN is 13.8, the average number
of activities executed when the failure occurs is 8.07, ancl the average number
of activities re-executed using our replanning algorithm is 1.13. We see that tile
proportion of re-executed activities using our replanning algorithm is only 14%
(1 .13/8.07) of those using brute force - resetting every subsystem ancl start-
ing from scratch. This demonstrates that the repaired plans generated by our
replanner are significantly more efficient thall brute-force replanning. Taljle 2
summarizes the empirical results for repaired plan efllciel)cy.

5 Discussions

In this section, we analyze some properties of the our replanning a]gorithnl

4 For exalnple, cornrnon]y there is an assumed execution context for an operator in
nominal usage which is not explicitly represented ill operator preconditions.

Table 2. Efficiency of the repaired plan

5.1 Terminat ion and soundness

Our replanning algorithm for determining which activities reqtlire re-exec(ltiorl
(described in Figure 5) will terminate because: (1) in the worst case when all the
executed activities are aclded back to the operational goal list of the plan, the
nonol)erational goals of the plan will twernpty; (2) when a violated precondition
isadded bac.kto thenonoperational goal list, it takes afiniten umberofiterations
to add the executed activity that achieves this precondition; and (3) every goal
list is allowed to be added back to the (non) oj)erational goal list at most once.
Thus the complexity of the replanning algorithm is O(n) where n is the length
of the original plan.

Our replanning algorithms are soutld a.wurning that the domain knowledge
is correct. The soundness proof follows from analyzing the algorithnl in Figure 5
hy sl~owing: (1) every possible violation of the previously achieved state is ident-
ified in the algorithm; (2) every violated state is re-established by re-executing
activities in the original plan that estaMislled these conclitions. Since the orig-
inal plan is sound, the replannilig algorithm ensures that there are no violated
protcctior~s ill the repaired plan, and th{ls is souncl.

5 . 2 Cenera]ity

Out replanning algorithm is based on protection analysis. ‘1’he protections in our
plans are derived from the the preconditions and effects of activities in the plan.
Thus our replanning approach is applicable to all planners that maintain such
protections, including [Pemberthy atld Weld 1992, Carbonell et al 1992, Chien et al 1995].

We also learnecl that planners with only hierarchical decomposition capabil-
it y are insufficient for replanning ul)less proper protections are specified. Most
decompositio~lal rules only specify how to decompose a high level activity to low
level activities and the ordering constrai!lts anlong them. Protections are not re-
quirecl to generate initial correct plans, altl)ough most IITN planners allow and
elicourage the s~)ecification of protections. In contrast, operator-based planning
requires tl~at [J1@XMIClitiO1ls and effects of each activity be encocled explicitly in
order to function properly. Protections are gel~erated by the planner automat-
ically froln the preconditions and effects, We believe t,llat since protections are
essential for replanning, operator-based planning is more natural for replanning
purposes.

6 Related Work

One situilar replanning system is the CHEF system [Hammond 1989]. In CHEF,
failures are all clue to unforsecn goal irlteractioms The CHEF systmn classifies
a failure, infers a missil~g goal, and applies a critic to repair tllc plaI1. Tliis
problem differs from our replanning problcl]l - i~~ our case tt~c problem is)lot
an unrecognized goal interaction but rather a clmnge in the I)roblcm state or
goals. Thus, in our replannil~g prot)lem one (inefficient) alternative is to si[nply
re-execute the entire plan. This would be unwise in the CHEF replanning context
because it is assumed the plan would sim~)ly fail agaiil. In our replanning context,
the desired outcome is to recover so as to achieve the possibly alterec{ goal set
while retaining as much of the original plan a.s possible.

SIPE [Wilkins 1988] also performs replanning in response to unexpected ex-
ternal events that change the state. SIPE first classifies the failure type and then
uses this classification to apply a critic to repair the plan. Again, our replan-
ning problem is constrained such that resetting the subsystems and re-executing
the entire plan is a viable alternative - the goal is to minimize unnecessary I e-
execution. In SIPE’S replanning scenario arbitrary replanning may be required.
Thus, SIPE uses specific information in the form of critics. In our replanning
problem the etnphasis is on replanning to re-use the original plan, thus our ap-
proach focusses on re-establishing conditions using portions of the original plan.

Other previous work in the case-based reasoning or analogy work concen-
trates on adapting a case for a similar protjlem to the new problem situation
[Veloso 1992, Karnbhampati 1990]. ‘1’heir algorithms involve adding and cfelet-
ing activities from the original plan based on an analysis of the applicability of
the dependencies to the current problem context. This work differs from ours in
two ways. First, in our approach, we handle situations where part of the plali
is likely to have been executed when repla~l[ling occurs. Thus replanning must
account for the altered initial state. Second, in our approach, minimizing the
number of re-executed activities is desirable.

Previous work in the framework of i~ltegrating planning, executing, arid re-
planning [Knoblock 1995, Drabble 1995] relies on the domain designer to provide
repair methods for each type of failure. In the replanning problems we are ad-
dressing, it is impractical to specify a repair method for each specific class of
failure. For example, in the DSN domain, there may be many different kinds
of failures, failures may happen at almost any time during execution, there are
tens of subsystems, etc. Hence, we have clesigned our algorithms to WOI k from
more general information (such as tile execution status of activities). However,
we still require certain slmcific information (e. g., the relevant subsystem to leset
fcm an activity failure).

7 Future Work

This paper has presented a general framework for replanning required by changes
in probleln context. However, there are several areas for future work which are

clrivell by operat iolial rcxluirclnellts of our target :~pp]icatioll dolrlaili of DSN an-
tenna o~wratiolls. q’his palmr represents a first step towards tackling this conl-
plex ~jroblmtl and tllerc arc numerous outstandirlg issues which ~emain to be
,addrcss cd. We describe several of these issues t~clow.

In tile DSN, there is a tradeoff of the granularity of representing the activities,
The activities are the lowest Icvel pri[nitives that ttie planner reasons about:
each activity may contain tens of directives (collllnallds). Solnetimes during an
execution failure, instead of re-executing a whole activity, it is possible to only
re-execute a subset of all the directives in the activity, so that the total execution
time ~nay be shortened. To capture this l)lan repair lcnowleclge, we can break all
activity C1OWI1 to a nurnbcr of activities, but then the planner must reason at
a lower level of abstraction. This xnay result in a less maintainable knowledge
}>ase for the planner and degracled planner performance (planning speed). One
area for future work is to better understand the tradeoffs and implications of
selecting a particular level of abstraction for the pla~lner.

In the DSN clonlain, actions take time. If the recovery actions take all ex-
tended amount of time, there may Ilot be enough time to perform a planned
ecluiprnent performance test M well a.s starting the acquisition of data at the
recluirecl time. In this case, a tradeof~ must be evaluatecl. For example, should
the data be captured witbout doing the performance test? Or would the data
be useless without the performance test? 13nclowing a planning system to rea-
son abc)ut the utility of these differing courses of action to take the best overall
course of action is a long-term goal.

In the DSN clomain, during execution, some subsystems may be removed
due to competing requests. Usually, these subsystems arc not neecled any more
by the task, ar]cl are requested to be used by other tasks. What is the proper
way to remove the equipment from the system? How do we unlink it with other
subsystems? Enhancing the planning system to be able to reason about these
types of te[nporal constraints and rcclumts (using a more expressive temporal
representation) is an area for future work.

Finally, in the DSN, the state of each of the subsystems is complex and con-
tains a large amount of informatio~l. .41though in principle, all relevant state in-
for~nation can be illferred by an expert o~)erator, in practice this is cluite difficult.
How can the planning system recover from failures in a way so as to reduce the
need for operators to perform complex, titIle-colls[ltLli~lg and knowledge-intensive
diagnoses?

8 Conclusions

In order to scale-up to real-worlcl problems, planlling systems must be able to
replan in order to deal with changes in problem context. This paper has de-
scribed hierarchical task ILetwork and operator-based re-planning techniques to
adapt a previous pla!] to account for: state changes, aclcled new goals, and failed
actions. This approach attempts to preserve elements of the original plan in
order to utilize more reliable no]nirla] operations domain knowledge and to facil-
itilt(~ Ilser ll[lci(>rst:l~ldi~lg. I~L adclition, the re~)la~lning lnethocls attempt to avoid

ullllccessary re-acllicvelIlellt of goals, We nave also presented em[)irical lesults
documenting the effcctivcnirxs of these techniques it] a NASA antenna o~)eratio~)s
application.

References

[Carbonell et al 1992] Carbonell, J. G.; l~lytl,e, J.; Etzioni, C),; Gil, y.; Joseph, R.;
Kahn, D.; Knoblock, C.; Minton, S.; P6rez, M. A.; Reilly, S.; Veloso, hi.; alLd
Wang, X. PROD1r3Y 4.0: ‘~’be Malluai a n d ‘rutorial, 2’ech71ica/ report, School of
Computer Science, CarI~egie hlcllo[l University, 1992.

[Chien et al 1995] S. Chien, A. Govindjee, T’. Estlin, X. Wang, and R. IIill Jr., Inte-
grating IIierarchical Task Network and Operator-based Planning Techniques to
Automate Operations of Communications Antennas, IEEE Expert, December
1996.

[I)rabble 1995] B. Drabble. Replanning in the O(Plan) architecture, Personal com-
nluniccction, 1995.

[Erol et al 1994] K. Erol, J. f[endler, and D. Nau, UMCP:A Sound and Complete
Procedure for Hierarchical l’ask Network I’lanning, Proceedings o/ the .$econd
Intemationa/ Conference on AI I’/an7iing Systems, Chicago, 11,, June 1994, pp.
249-254.

[IIanln~ond 1989] K. lla~n[rlond. Case-Based Planning: Viewing planning as a memory
task. 1989.

[Kambhampati 1990] S. Kambhampati. A theory of plan modification. In Proceedings
of the Eighth National Confere7~ce on Artificial lntelligerLce, Boston, MA, 1990.

[Kambhampati 1995] S. Karnbharnpati. A Comparative analysis of Partial C)rder
Planning and Task Reduction Planning In ACM SIGAR7’ Bulletin, V01,6,, No.1,
1995.

[Knoblock 1995] C. Knoblock. F’lannir,g, executing, sensing, and replanr,ing for infor-
mation gathering. In Proceedings of IJCA I 95, Montreal, CA, 1995,

[Pemberthy and Weld 1992] J. S. Pernberthy and D. S. Weld, UCPOP: A Sour,d Coln-
plete, I’artial Order Plarlner for AI) I,, Proceedings of the ‘Third Inter-national C07L.
ference on Knou,ledge Represe7Atation and Reasoning, October 1992.

[Currie and Tate 1991] K, Crrrrie and A. Tate, The Open Planning Architecture, Irl
Artificial Intelligence, 51(l), 1991.

[Veloso 1992] M. Veloso. Learning by Analogical Reasoning in General Problen, Solv-
ing. PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, 1992.

[Wilkins 1988] D. Wilkins, Practical Planning: Extending the Classical AI Planning
Paradigm. Morgan Kaufrilann, 1988.

q’his article was processed using tile I&l~,~ nlacro package with LI,NCS style

